Diversity of Insect Pollinators in Gozamin District of Amhara Region, Ethiopia
Manaye Misganaw,
Girma Mengesha,
Tesfaye Awas
Issue:
Volume 8, Issue 5, September 2020
Pages:
123-131
Received:
12 August 2020
Accepted:
25 August 2020
Published:
14 September 2020
Abstract: Pollination is one of a valuable ecosystem services in the maintenance of biodiversity and ensures the survival of plant species. Therefore, Insect pollinators’ diversity and their role in the ecosystem are not sufficiently recorded; thus, conducting assessment of their diversity and roles helps to recognize the economic and ecological value of insect pollination, and potential impacts of the loss of insect pollinators. Therefore, the overall aim of this study was to assess and identify insect pollinators’ diversity and frequently visited plant species in cropland and natural habitat of the study area. Transect sampling and direct field observation was used to collect data. The abundance of insect pollinators from the three study sites were sampled systematically using two transects one along the Shrubland and the other on farmland habitat. A total of 60 transect sample plots 30 in the farmland and 30 in the Shrubland habitats were observed in the study areas. A total of 34 insect pollinator species were identified. The most frequently recorded insect pollinator was Apis mellifera in Shrubland (60.4%) and farmland (67.3%). Insect diversity of the Shrubland was higher (H’=1.72) than farmland (H’=1.514). Similarly, evenness was higher in the Shrubland (J’=0.5485) as compared to farmland (J’=0.4974) which is somehow even distribution in both habitats. To understand the most visited plants by insect pollinators 40 wild plants and 4 crop species were identified. Among the sampled plants Crassocephalum macropappurn was the most frequently visited plant by different insect pollinators while Guizotia abyssinica was the most frequently visited among the sampled crops. The study has shown occurrence of diverse insect pollinators and plant species visited by insect pollinators as function of ecosystem services in the area.
Abstract: Pollination is one of a valuable ecosystem services in the maintenance of biodiversity and ensures the survival of plant species. Therefore, Insect pollinators’ diversity and their role in the ecosystem are not sufficiently recorded; thus, conducting assessment of their diversity and roles helps to recognize the economic and ecological value of ins...
Show More
Healthy Monozygotic Twins Born from a Vitrified Blastocyst Derived from a Vitrified Oocyte, and a Highly Efficient Vitrification for Freezing Human Oocytes and Blastsocysts
Shaohua Huang,
Christina Miao,
Samuel Sun,
Sameh Toma
Issue:
Volume 8, Issue 5, September 2020
Pages:
132-138
Received:
11 November 2019
Accepted:
15 January 2020
Published:
24 September 2020
Abstract: We used simplified oocyte/embryo vitrification and warming protocols (Irvine Scientific) combined with vitristraws (SciTech Invention) to freeze and thaw human oocytes and blastsocysts. Throughout the year of 2014, twelve recipients were transferred embryos developed from vitrified donor oocytes, and fourteen recipients were transferred embryos developed from fresh donor oocytes at the North Carolina center for reproductive medicine (NCCRM). There were no statistically significant differences in donor age (25.9 ± 3.6 vs 24.9 ± 3.2) and recipient age (43.0 ± 5.4 vs 41.4 ± 6.8), fertilization rates (86.2% vs 87.0%), blastocyst development rates (50.0% vs 53.8%), number of embryo transferred (1.7 ± 0.8 vs 1.9 ± 0.4), clinical pregnancy rates per transfer (75.0% vs 71.4%) and live birth rates per transfer (66.7% vs 57.1%) between vitrified and fresh oocyte cycles, respectively. The results demonstrate that vitrification techniques can be used to cryopreserve human oocytes for future use. We are also reporting the live birth of healthy monozygotic twins resulted from a re-vitrified blastocyst derived from a vitrified oocyte. Oocytes from a 30-year-old donor were vitrified in vitristraws. Seven out of eight oocytes survived after thawing on November 16, 2013. Those seven oocytes were inseminated by intracytoplasmic sperm injection (ICSI) at about 2 hours post thawing. All seven oocytes were tested as fertilized by pronuclear check at 18 hours after ICSI. Those fertilized oocytes showed normal cleavage on day 2 and day 3. Four of them developed to blastsocysts by culturing in continuous single culture medium in a tri-gas incubator for 5 days. Two blastsocysts were transferred to a 43-year-old recipient, but that did not result in a pregnancy. The other two blastsocysts were re-vitrified in a vitristraw. The re-vitrified blastsocysts were thawed and then transferred to the same recipient on May 8, 2014. The patient achieved a normal pregnancy on her second transfer. On June 14, 2014, an ultrasound scan detected two heartbeats in one gestational sac. Two healthy monozygotic boys (weighing 2466g and 2353g) were born on January 13, 2015. To our knowledge, this is the first report of monozygotic twins born from an embryo by twice vitrification at oocyte and blastocyst stage.
Abstract: We used simplified oocyte/embryo vitrification and warming protocols (Irvine Scientific) combined with vitristraws (SciTech Invention) to freeze and thaw human oocytes and blastsocysts. Throughout the year of 2014, twelve recipients were transferred embryos developed from vitrified donor oocytes, and fourteen recipients were transferred embryos dev...
Show More